

$$f(x) = \begin{cases} x^2 + x - 1 & \text{if } x \le 0, \leftarrow \text{ continuous on (o, 60)} \\ x + A & \text{if } x > 0. \leftarrow \text{ continuous on (-60, 0)} \\ & \text{ constant} \end{cases}$$

Solution. Because $x^2 + x - 1$ and x + A are polynomials, they are continuous everywhere except possibly at x = 0. Also $f(0) = 0^2 + 0 - 1 = -1$.

$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x^2 + x - 1) = -1$$

and

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x+A) = A.$$

For $\lim_{x\to 0} f(x)$ to exist, the left hand limit and the right hand limit must be equal. So we must have A = -1. In which case

$$\lim_{x \to 0} f(x) = -1 = f(0).$$

This means that f(x) is continuous for all x only when A = -1.

Proposition 3.1.2. f(x) is continuous at x = c if and only if

$$\lim_{h \to 0} f(c+h) = f(c).$$

Proof. Let
$$h = x - c$$
. Then $h \to 0$ as $x \to c$.

$$\lim_{x \to c} f(x) = \lim_{h \to 0} f(c+h).$$

$$\lim_{x \to c} f(x) = \lim_{h \to 0} f(c+h).$$

$$\lim_{x \to c} f(x) = \sqrt{a} \int_{0}^{x} \int_{0}^{x$$

Find a such that f(x) is continuous at 0. (Ans: a = -1)

Example 3.1.10 (Using continuity to compute limits). $\lim_{x \to \infty} \sin\left(\frac{1}{x}\right) = ?$ the metric variable, let $u = \frac{1}{x}$

Continuity on [a, b]3.2

Definition 3.2.1. Let $f:(a,b) \to \mathbb{R}$ be a function. Then f is said to be continuous on (a,b)if it is continuous at every point on (a, b).

Next, let's assume $f : [a, b] \to \mathbb{R}$ be a function. What's the meaning of f being continuous at one of the end point a? $\lim_{x\to a} f(x)$ does not make sense because f is not defined on x < a. So to define the continuity at $x = \sqrt{a}$, we only concern about the value x > a. Similarly, to discuss about the continuity at x = b, we only concern about the value x < b. a pb f is defined

Definition 3.2.2. Let $f : [a, b] \to \mathbb{R}$ be a function. Then f is said to be continuous at a if

$$\lim_{x \to a^+} f(x) = f(a).$$

f is said to be continuous at b if

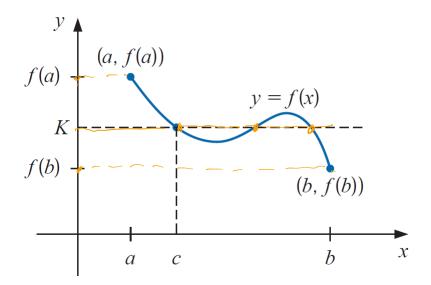
$$\lim_{x \to b^-} f(x) = f(b).$$

Then f is said to be a continuous function on [a, b] if f is continuous on $a \le x \le b$.

Example 3.2.1. Discuss the continuity of the function $f : [0,1] \to \mathbb{R}$ defined by

Theorem 3.2.1 (Intermediate Value Theorem or Intermediate Value Property). Suppose f is a continuous function on [a, b] and K is a number between f(a) and f(b). Then there exist a number c, between a and b, such that f(c) = K.

Geometrically, the Intermediate Value Theorem says that any horizontal line $y = y_0$ the thrust says that $y = y_0$ the crossing the y-axis between the numbers f(a) and f(b) will cross the curve y = f(x) at least once over the interval [a, b]. tell no where



If f(x) is continuous on [a, b], f(a) and f(b) change sign, then, there exists at least one root of the function, that is, exists at least one $c \in (a, b)$, such that f(c) = 0. The poly the intermediate that with K = O (by the intermediate that with K = O (by the hase Example 3.2.2. Show that $f(x) = x^5 - x + 1$ has a root. Take κ to be very large $(x \gg 0)$ Take κ to be very large $(x \gg 0)$

Cis

Chapter 3: Continuity

(a)
$$f(b)$$
 change sign Since
 $x - \cdots + y$ negative $(x \ll 0)$
 $4 \approx -50$
 $4 \approx -50$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$
 $3 - 9$

Solution. Aim: find a, b, such that f(a), f(b) change sign. Since

take

$$f(-2) = -29, \quad f(0) = 1,$$

and f is continuous on [-2,0]. By Intermediate value theorem, there exists $c \in (-2,0)$, such that f(c) = 0.

Remark. Although we don't know how to find the root, we know a root exists.

1. All odd functions have a root. f(x) = -f(-x)Example 3.2.3.

2. All polynomials of odd degrees have a root.

Exercise 3.2.1. Show
$$2^x = \frac{1}{x^2}$$
 has a solution.
Exercise 3.2.1. Show $2^x = \frac{1}{x^2}$ has a solution.
 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) = -\lim_{x \to \infty} f(x) = -\lim_{x$

Theorem 3.2.2 (Extreme Value Theorem). If f(x) is continuous on [a,b], then f must attain an absolute maximum and absolute minimum, that is, there exist c, d if [a, b] such that

$$f(c) \le f(x) \le f(d),$$
 closed, finite interval!

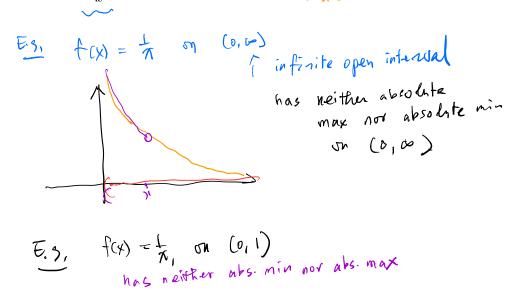
for all $x \in [a, b]$.

Example 3.2.4. Absolute extreme for $f(x) = x^3 - 21x^2 + 135x - 170$ for various closed intervals.



Exercise 3.2.2 (Hard!). Derive the extreme value theorem from the intermediate value theorem.

Remark. Caveat: The extreme value theorem only works on *finite* intervals! E.g. Consider the previous example on \mathbb{R} or $\frac{1}{x}$ on \mathbb{R}^+ .



Question: How to find the absolute maximum and minimum?

Ans: (for "good" functions) Differentiation!

Fibry
$$\overline{E_X}$$
: Compute $\lim_{x \to \infty} \sin(\frac{t}{x})$
Sol: change of variable: $u = \frac{t}{x}$ when $x \to \infty = u \to 0^+$
 $\lim_{x \to \infty} \sin(\frac{t}{x}) = \lim_{x \to 0^+} \sin u = \sin 0 = 0$
 $\lim_{x \to \infty} \frac{u \to 0^+}{1}$
Use the continuity of sin.
and the composition vale for
continuity.

MATH1520 University Mathematics for Applications

Spring 2021

Chapter 4: Differentiation I

Learning Objectives:

(1) Define the derivatives, and study its basic properties.

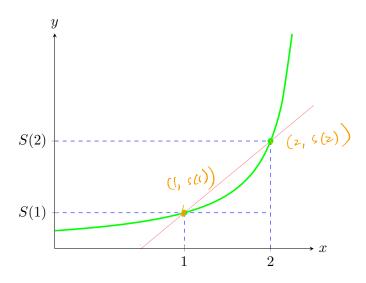
(2) Study the relationship between differentiability and continuity.

(3) Use the constant multiple rule, sum rule, power rule, product rule, quotient rule and chain rule to find derivatives.

(4) Explore logarithmic differentiation.

4.1 Motivation & Definition

Motivation from physics: velocity Suppose an object is moving along *x*-axis from the origin to right. Let S = S(t) be the position of the object at time *t*. What is the average velocity of this object from t = 1 to t = 2?



Average velocity from t = 1 to $t = 2 = \frac{\text{Change of distance}}{\text{Change of time}}$ $= \frac{\Delta S}{\Delta T}$ $= \frac{S(2) - S(1)}{2 - 1}$ = slope of secant line passing through (1, S(1)) and (2, S(2))

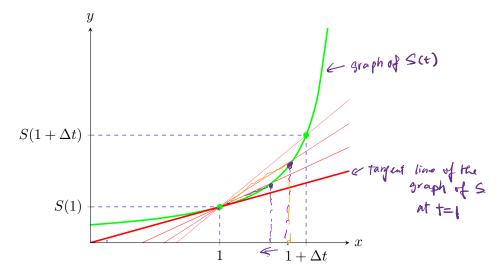
Question: What is the instantaneous velocity at t = 1? (i.e. faking $st \rightarrow 0$ in the difference guo fient) Idea: Average velocity from t = 1 to $t = 1 + \Delta t$ is $\frac{S(1 + \Delta t) - S(1)}{\Delta t}$, where Δt is small.

Let $\Delta t \rightarrow 0$, the instantaneous velocity at t = 1 is defined to be

$$S'(1) = \lim_{\Delta t \to 0} \frac{S(1 + \Delta t) - S(1)}{\Delta t}, \quad \leq \text{ slope of the target}$$

time through the target through the the through the the the through the

which is called the **derivative** of *S* at t = 1. S'(1) describes the rate of change of S(t) at t = 1.



Remark. Terminology: The term "velocity" takes the direction of motion into account; it can be positive or negative. The term "speed" only takes into account the rate of change, disregarding the direction. It is the absolute value of the velocity.

Definition 4.1.1. The **derivative** of f(x) is the function

$$\underbrace{f(x)}_{\Delta x \to 0} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$
(4.1)

The process of computing the derivative is called **differentiation**, and we say that f(x) is **differentiable** at $x = x_0$ if $f'(x_0)$ exists; that is, $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ exists.

- *Remark.* 1. By definition, if $f(x_0)$ is not well-defined, we cannot define $f'(x_0)$. So f(x) must not be differentiable at $x = x_0$.
 - 2. Another equivalent formula:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$
$$\frac{\Delta f}{\Delta x} = \frac{f(x) - f(x_0)}{x - x_0}$$

3.

is called **difference quotient.**

- 4. $f'(x_0)$ describes the rate of change of f(x) at $x = x_0$.
- 5. When we say that we use **the first principle** to find derivatives, we mean that we use the definition (4.1) to find the derivative. However, later we will learn faster techniques to find derivatives.

Geometrical interpretation of differentiation: $f'(x_0)$ is the slope of tangent line to the curve of f(x) at $x = x_0$.

Example 4.1.1. Let $f(x) = x^2$. Then (i) prove that f(x) is differentiable at x = 1; (ii) find f'(1) and the equation of the tangent line to the curve at x = 1.

Solution. (i) By the definition, at
$$x = 1$$

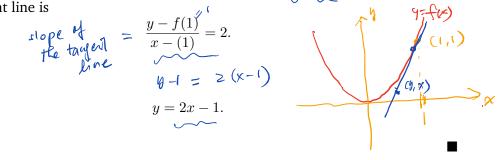
$$f(x) = \lim_{\Delta x \to 0} \frac{f(1 + \Delta x) - f(1)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(1 + \Delta x)^2 - 1^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (2 + \Delta x)$$

$$= 2,$$

So, f is differentiable at 1, and f'(1) = 2.

(ii) The tangent line passes through (1, f(1)) = (1, 1) with slope f'(1) = 2. So, the equation of the tangent line is



Thus

Definition 4.1.2. If $f(x) : A \to \mathbb{R}$ is differentiable at every point $x \in A$, then f(x) is said to be a differentiable function in A, and the derivative function $f'(x) : A \to \mathbb{R}$ is well-defined.

Example 4.1.2. Let
$$f(x) = x^2$$
, Prove that $f(x)$ is differentiable on \mathbb{R} , and find $f'(x)$.
Solution. For any $x \in \mathbb{R}$,
 $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x} = \lim_{\Delta x \to 0} (2x + \Delta x) = 2x$.
So, f is differentiable at x , and $f'(x) = 2x$.
For all real φ so f is a differentiable function on \mathbb{R}

Notation: For $y = f(x) = x^2$,

$$f'(x) = \frac{dy}{dx} = \frac{df}{dx} = 2x; \quad f'(4) = \frac{dy}{dx} = \frac{df}{dx} = 2 \cdot 4 = 8.$$

Question Where does the minimum of x^2 occur? (Hint: what is the slope of the tangent line at the minimum?)

Example 4.1.3. Let $f(x) = \frac{x+1}{x-1}$. Using the definition of derivatives, compute f'(x) for $x \neq 1$.

Solution.

$$f'(x) = \lim_{x \to \infty} \frac{f(x + \Delta x) - f(x)}{f(x + \Delta x) - f(x)} = \lim_{x \to \infty} \frac{f(x + \Delta x) - f(x)}{(x + \Delta x - 1)} = \lim_{x \to \infty} \frac{f(x + \Delta x) - f(x)}{(x - 1)(x + \Delta x - 1)}$$

Therefore

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2}{(x - 1)(x + \Delta x - 1)}$$
$$= \frac{\lim_{\Delta x \to 0} (-2)}{\lim_{\Delta x \to 0} (x - 1)(x + \Delta x - 1)} = \frac{-2}{(x - 1)^2}.$$

Example 4.1.4. Find the derivative of $f(x) = \sqrt{x}$ for x > 0.

Solution.

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(\sqrt{x + \Delta x} - \sqrt{x})(\sqrt{x + \Delta x} + \sqrt{x})}{\Delta x(\sqrt{x + \Delta x} + \sqrt{x})} \leq \frac{(x + 2x) - x^2}{(x + 2x) - x^2}$$

$$= \lim_{\Delta x \to 0} \frac{1}{\sqrt{x + \Delta x} + \sqrt{x}}$$

$$= \frac{1}{2\sqrt{x}}.$$

So,
$$\left(x^{\frac{1}{2}}\right)' = \frac{1}{2}x^{-\frac{1}{2}}, x > 0.$$

Example 4.1.5. Find the derivative of $f(x) = \sqrt[3]{x}$. **Hint:** $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$.

Solution. For any $x \neq 0$,

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt[3]{x + \Delta x} - \sqrt[3]{x}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(\sqrt[3]{x + \Delta x} - \sqrt[3]{x})((\sqrt[3]{x + \Delta x})^2 + \sqrt[3]{x + \Delta x} \cdot \sqrt[3]{x} + (\sqrt[3]{x})^2)}{\Delta x((\sqrt[3]{x + \Delta x})^2 + \sqrt[3]{x + \Delta x} \cdot \sqrt[3]{x} + (\sqrt[3]{x})^2)}$$

$$= \lim_{h \to 0} \frac{x + \Delta x - x}{\Delta x((\sqrt[3]{x + \Delta x})^2 + \sqrt[3]{x + \Delta x} \cdot \sqrt[3]{x} + (\sqrt[3]{x})^2)}$$

$$= \lim_{\Delta x \to 0} \frac{1}{(\sqrt[3]{x + \Delta x})^2 + \sqrt[3]{x + \Delta x} \cdot \sqrt[3]{x} + (\sqrt[3]{x})^2}}{\frac{1}{3(\sqrt[3]{x})^2}}$$

For x = 0,

$$\lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt[3]{\Delta x} - \sqrt[3]{0}}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{(\Delta x)^{\frac{2}{3}}} \quad \text{does not exist.}$$

So,

$$(x^{1/3})' = \begin{cases} \frac{1}{3}x^{-\frac{2}{3}}, & x \neq 0\\ \text{Not exist at } x = 0 \text{, i.e. } x^{\frac{1}{3}} \text{ not differentiable at } 0 \end{cases}$$

Example 4.1.6. Discuss the differentiability of
$$f(x) = |x|$$
.
Solution. For $x_0 > 0$,
 $\begin{cases} y \in chr_{15} \le cmh_{101} \text{ soles} \text{ for } chr_{15} \le cmh_{101} \text{ soles} \text{ for } chr_{15} \text{ for } chr_{15} = cmh_{101} \text{ soles} \text{ for } chr_{15} =$

4.2 Properties of derivatives

4.2.1 Differentiation and Continuity

Proposition 1. f(x) is differentiable at $x = x_0 \implies f(x)$ is continuous at $x = x_0$.

Proof. Suppose
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 exists, then

$$\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0) \right)$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot \lim_{x \to x_0} (x - x_0)$$

$$= f'(x_0) \cdot 0 = 0.$$

So, $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} (f(x) - f(x_0)) + \lim_{x \to x_0} f(x_0) = 0 + f(x_0) = f(x_0)$, that is, f(x) is continuous at x_0 .